Type II PtdInsP kinases: location, regulation and function.

نویسندگان

  • Jonathan H Clarke
  • Jonathan P Richardson
  • Katherine A Hinchliffe
  • Robin F Irvine
چکیده

The regulation of the synthesis of PtdIns(4,5)P2 is emerging as being as complex as we might expect from the multi-functional nature of this lipid. In the present chapter we focus on one aspect of inositide metabolism, which is the functions of the Type II PIPkins (Type II PtdInsP kinases). These are primarily PtdIns5P 4-kinases, although in vitro they will also phosphorylate PtdIns3P to PtdIns(3,4)P2. Thus they have three, not necessarily exclusive, functions: to make PtdIns(4,5)P2 by a quantitatively minor route, to remove PtdIns5P and to make PtdIns(3,4)P2 by a route that does not involve a Class I PtdIns 3-kinase. None of these three possible functions has yet been unambiguously proven or ruled out. Of the three isoforms, alpha and beta are widely expressed, the IIalpha being predominantly cytosolic and the IIbeta primarily nuclear. PIPkin IIgamma has a much more restricted tissue expression pattern, and appears to be localized primarily to intracellular vesicles. Here we introduce in turn each of the three Type II PIPkins, and discuss what we know about their localization, their regulation and their function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of protein sub-nuclear localization by synthetic phosphoinositides: evidence for nuclear phosphoinositide signaling mechanisms.

PtdInsPs are critical signaling molecules that regulate diverse cellular functions. One method to study PtdInsP biology involves using synthetic PtdInsP analogs to activate endogenous PtdInsP-mediated events in living cells. Such methodology has been successfully employed to explore the role of several PtdInsP-biological outcomes in the cytoplasm. However, this strategy has not previously been ...

متن کامل

Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase.

To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(...

متن کامل

Proteomic identification of phosphatidylinositol (3,4,5) triphosphate-binding proteins in Dictyostelium discoideum.

Phosphatidylinositol (3,4,5)-triphosphate (PtdInsP(3)) mediates intracellular signaling for directional sensing and pseudopod extension at the leading edge of migrating cells during chemotaxis. How this PtdInsP(3) signal is translated into remodeling of the actin cytoskeleton is poorly understood. Here, using a proteomics approach, we identified multiple PtdInsP(3)-binding proteins in Dictyoste...

متن کامل

Endothelial Vasodilator Angiotensin Receptors are Changing in Mice with Ageing

Background: The vascular function of Angiotensin II-type-2 receptors in adults is controversial. We sought their location and function in mouse aortic rings at young and old mice. Materials and Methods: Male C57Bl mice (aged 4 and 14 months) were killed by CO2. The descending thoracic aorta was cleaned and dissected into rings. Aortic rings were mounted in Krebs’ solution at 37 °C an...

متن کامل

Characterization of a Rac1- and RhoGDI-associated lipid kinase signaling complex.

Rho family GTPases regulate a number of cellular processes, including actin cytoskeletal organization, cellular proliferation, and NADPH oxidase activation. The mechanisms by which these G proteins mediate their effects are unclear, although a number of downstream targets have been identified. The interaction of most of these target proteins with Rho GTPases is GTP dependent and requires the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society symposium

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2007